
June 20, 2006

Design++ 6.0 Release Notes for Windows 2000/XP/2003
===

We are pleased to announce the release of Design++ 6.0 for Windows
2000/XP/2003. Design++ 6.0 includes multiple new modules and
enhancements, the most important ones being the following.

HIGHLIGHTS

 AUTODRAFTER

 AutoDrafter provides functionality for automatic generation of
 CAD drawings from a Design++ model. AutoDrafter creates a
 drawing model that represents a set of 2D CAD drawings. Each
 drawing set contains one or more projected views of the then
 active 3D CAD model. The views can be annotated with text,
 symbols, dimensions, labels, and lines. All views and
 annotations are controlled by rules so the drawings can
 dynamically change in response to model changes.

 REPORTWRITER

 ReportWriter is used for creating custom reports from a Design++
 model. Report data can be formatted to be viewed by a user or
 imported into other programs such as estimating or material
 management systems. ReportWriter comes with a set of sorting,
 totaling, sub totaling, and filtering tools. Both ASCII and XML
 formats are supported. Report templates can be saved along with
 a project for repeated use.

 QUERYTOOL

 QueryTool allows ad hoc queries into Design++ models and
 libraries. Queries are specified with regular expression based
 search filters. Queries return model/library information
 matching search filter specifications. Query results can be
 operated upon, saved, and printed.

 LICENSE MANAGER

 The new license usage monitoring capability allows organizations
 to keep better track of the use of their floating, networked
 Design++ licenses. For example, the license usage log can be
 used to analyze the peek usage during a certain time period, or
 the number of Design++ access denials due to lack of licenses.

 Also, network license performance over a slow network connection
 has been improved significantly.

 DESIGN RULE EDITOR

 Design Rule Editor (DRE) is integrated more closely with the
 rest of the Developer's Interface (UIP). For example, DRE now
 opens automatically in the vicinity of the location from where
 the edit request was issued. Also, the 'Context Sensitive Menu'
 dialog is integrated with the main DRE window. To support rule
 development, rule compilation warnings and error messages are
 now shown in an easy-to-notice dialog. Rules are also indented
 automatically.

 PROJECT PATH HANDLING ENHANCED

 Projects can now be loaded from anywhere regardless of the
 initial project path setting. Also, both the project and license
 paths can be specified using UNC.

 NEW DESIGN RULE MACROS

 New configuration macros, :create and :relate, simplify the
 syntax for *substructure*, *relations*, and role attribute
 rules. They also allow partial instantiation of substructure and
 relation descriptions by isolating any calculation errors or
 delays from the rest of the rule.
 Other new macros include :local-value and :instances.

 CHANGE MANAGEMENT

 Change management has been optimized significantly. Also, design
 rule tracing and error tracking capabilities have been improved.

 COMPONENT CREATION OPTIMIZED

 Component creation has been optimized for instantiating large number
 (>100+) of components of the same class under a single assembly.

 ODBC LINK

 ODBC (RDB) link has been optimized significantly for retrieving large
 amount of data with a single query. The larger the amount
 retrieved, the bigger the improvement.

 COM/API LINK

 Message strings are now allocated dynamically removing an
 artificial upper bound for message length. Previously messages
 over 500 KB could cause dppCOMserver to crash with a stack
 overflow.

 SUPPORTED CAD VERSIONS

 AutoCAD: 2000, 2000i, 2002, 2004, 2005, and 2006.
 MicroStation: V7, V8 2004 Edition, and V8 XM Edition.
 Visio: 2000, 2000 SR1, 2002, and 2003.

 WINDOWS SERVER 2003 SUPPORT

 In addition to Windows 2000 and XP, Design++ 6.0 is now also

 supported on Windows Server 2003.

--
KNOWN LISP ISSUES WHEN PORTING FROM D++ 5.0 TO 6.0
--

Here are known Lisp compatibility issues to take into account when
porting a Design++ 5.0 (ACL 6.1 based) application to Design++ 6.0
(ACL 7.0 based). These issues result from Franz's continued effort to
clean up ACL's remaining non-conformances with the ANSI standard. If
you run into other Lisp related issues not covered here, just let us
know.

* LOOP: do nil else

 ERROR:
 ;;; Compiling file h:\d++\code-acl\infix\rule-macro.lisp
 ; While compiling EXPAND-ALL-VALUE-REFERENCES-FOR-INFIX-PREFIX:
 Error: Compound form expected, but found NIL.
 Current LOOP context: DO NIL ELSE.
 [condition type: PROGRAM-ERROR]

 CODE:
 (loop for ref in refs
 for ref-exp = nil
 if (member ref vars)
 do nil ;;do nothing, it's ok to use assigned
 else if ...
 do ...)

 EXPLANATION:
 The syntax of LOOP requires a _compound_ form -- a symbol (e.g. NIL)
 at the top level of a loop must be parsed as a go tag. Otherwise
 there would be ambiguity for symbols that might have symbol-macrolet
 definitions with expansions that have side effects.

 SOLUTION:
 (loop for ref in refs
 for ref-exp = nil
 if (member ref vars)
 do (progn) ;;do nothing, it's ok to use assigned
 else if ...
 do ...)

* FBOUNDP: invalid function spec

 ERROR:
 Error: #:THE-COMPONENT33905 is not a valid function spec
 [condition type: TYPE-ERROR]

 CODE:
 (special-operator-p (caar form))

 EXPLANATION:
 From Release Notes for Allegro CL 7.0:
 fboundp now errors when passed an invalid argument, function-name-p
 test whether argument is a valid name. fboundp was out of spec in

 earlier releases in that it returned nil rather than signaling an
 error when passed an argument which was not a valid function name or
 specification. (Thus (fboundp 3) returned nil rather than signaling an
 error.) fboundp now signals an error when passed an invalid
 argument. The new function function-name-p returns true if its
 argument is a valid function spec (and thus a suitable argument to
 fboundp) and returns nil otherwise. (if (function-name-p spec)
 (fboundp spec)) thus behaves in release 7.0 as (fboundp spec) did in
 earlier releases.

 SOLUTION:
 #+(and allegro (not (version>= 7 0)))
 (special-operator-p (caar form)))
 #+(and allegro (version>= 7 0))
 (if (excl:function-name-p (caar form))
 (special-operator-p (caar form)))

* ASSOC: non-cons ALIST elements

 ERROR:
 Attempt to take the car of D which is not listp.
 [condition type: TYPE-ERROR]

 CODE:
 (in-package :d)
 (setf xyz '((a b)(c) d))
 (defun test ()
 (declare (special xyz))
 (format t "(assoc 'a xyz) ~A~%" (assoc 'a xyz))
 (format t "(assoc 'c xyz) ~A~%" (assoc 'c xyz))
 (format t "(assoc 'd xyz) ~A~%" (assoc 'd xyz)))

 D++(8): (compile 'test)
 TEST
 NIL
 NIL
 D++(9): (test)
 (assoc 'a xyz) (A B)
 (assoc 'c xyz) (C)
 Error: Attempt to take the car of D which is not listp.
 [condition type: TYPE-ERROR]

 Restart actions (select using :continue):
 0: Return to Top Level (an "abort" restart).
 1: Abort entirely from this (lisp) process.
 [1] D++(10): :reset

 EXPLANATION:
 According to Common Lisp specification ASSOC function ignores NILs but
 considers any other non-cons ALIST element to be an error. Since the
 ALIST in the test case contains a non-cons symbol D, Lisp correctly
 signals an error.

 The reason why the compiled test case doesn't fail in D++ 5.x is that
 with the most optimized compiler settings Franz skips the non-cons
 check in ASSOC. But, for the ACL compiler version in D++ 6.0 Franz has
 further reduced the amount of error checks when the most optimized

 compiler settings are turned on. This has led into other sequence
 related problems in D++. To avoid these problems, we are now enabling
 certain error checks regardless of the compiler settings.

 Anyway, one way to avoid having to go through all ASSOC calls in your
 code is to define your own customized ASSOC version that would ignore
 all non-cons ALIST elements, instead of signaling an error.

 Below is an ASSOC version that should work for you. See the
 test cases below the function definition.
 Note that we are not overriding ACL's ASSOC function, instead we are
 defining a customized version named MY-ASSOC. You may want to name it
 to conform to your function naming standards.

 Simply paste the code below to one of your project function files and
 replace all ASSOC calls within your code with a call to your
 customized ASSOC.

 Even though, the customized ASSOC won't be as efficient as the ACL
 implementation, it probably does not have any overall performance
 implications. Still, we would recommend going through all your ASSOC
 calls at some point and fix them so that they could be reverted back
 to calling ACL's ASSOC.

 SOLUTION:
 (in-package :design++)

 ;;; Function MY-ASSOC (item alist &key (:test #'eql) :test-not (:key #'identity))
 ;;; Tka, 10-Mar-05
 ;;; A special version of the ASSOC function which ignores all non-cons
 ;;; elements of ALIST. (Common Lisp's ASSOC ignores nils but considers
 ;;; any other non-cons ALIST element to be an error.)
 ;;; Note that the argument :TEST-NOT is not implemented as it is
 ;;; recommended to be deprecated.
 (defun my-assoc (item alist &key (test #'eql) test-not (key #'identity))
 (declare (ignore test-not))
 (cond ((null alist) nil)
 ((not (consp (car alist))) ;Not a cons -> skip
 (my-assoc item (cdr alist) :test test :key key))
 ((funcall test (funcall key (caar alist)) item)
 (car alist))
 (t (my-assoc item (cdr alist) :test test :key key))))

 #||
 ;;;Test cases from Common Lisp HyberSpec. For more info, see
 ;;;http://www.lispworks.com/documentation/HyperSpec/Body/f_assocc.htm

 (setq values '((x . 100) (y . 200) (z . 50))) => ((X . 100) (Y . 200) (Z . 50))
 (my-assoc 'y values) => (Y . 200)
 (rplacd (my-assoc 'y values) 201) => (Y . 201)
 (my-assoc 'y values) => (Y . 201)
 (setq alist '((1 . "one")(2 . "two")(3 . "three"))) => ((1 . "one")
 (2 . "two") (3 . "three"))
 (my-assoc 2 alist) => (2 . "two")
 ;;(my-assoc-if #'evenp alist) => (2 . "two")
 ;;(my-assoc-if-not #'(lambda(x) (< x 3)) alist) => (3 . "three")
 (setq alist '(("one" . 1)("two" . 2))) => (("one" . 1) ("two" . 2))

 (my-assoc "one" alist) => NIL
 (my-assoc "one" alist :test #'equalp) => ("one" . 1)
 (my-assoc "two" alist :key #'(lambda(x) (char x 2))) => NIL
 (my-assoc #\o alist :key #'(lambda(x) (char x 2))) => ("two" . 2)
 (my-assoc 'r '((a . b) (c . d) (r . x) (s . y) (r . z))) => (R . X)
 (my-assoc 'goo '((foo . bar) (zoo . goo))) => NIL
 (my-assoc '2 '((1 a b c) (2 b c d) (-7 x y z))) => (2 B C D)
 (setq alist '(("one" . 1) ("2" . 2) ("three" . 3))) => (("one" . 1)
 ("2" . 2) ("three" . 3))
 ;;(my-assoc-if-not #'alpha-char-p alist :key #'(lambda (x) (char x
 ;; 0))) => ("2" . 2)
 ;;Special tests for non-cons alist elements 10-Mar-05 by tka.
 (setq alist '((a b) d (c))) => ((A B) D (C))
 (my-assoc 'a alist) => (A B)
 (my-assoc 'c alist) => (C)
 (my-assoc 'd alist) => NIL
 (setq alist '((a b) NIL (c))) => ((A B) NIL (C))
 (my-assoc 'a alist) => (A B)
 (my-assoc 'c alist) => (C)
 (my-assoc NIL alist) => NIL
 ||#

* SUBSEQ: end is beyond the end of the sequence

 ERROR:
 `end' is beyond the end of the sequence.

 CODE:
 A call to Lisp subseq with an end that exceeds the length of the
 sequence now (with ACL 7.0) generates an error, but it didn't in
 previous version (with ACL 6.1). For example:
 For example:
 (subseq '(a b c d e) 0 10)
 used to return
 (a b c d e)

 Now it returns:
 Error: `end' is beyond the end of the sequence.
 [condition type: SIMPLE-ERROR]
 Restart actions (select using :continue):
 0: Return to Top Level (an "abort" restart).
 1: Abort entirely from this process.
 [1]

 EXPLANATION:
 Until ACL 6.1 SUBSEQ had a bug that allowed the "correct" behaviour.
 The bug was fixed in a patch to ACL 6.2 (on Fri Jan 9 15:12:51 PST 2004).

 SOLUTION:
 Go through your SUBSEQ calls to make sure that END index is within the
 bounds of SEQUENCE.

DESIGN RULE MACROS

* Parsing of Design Rules with local location clauses

 (:local-right-of, :local-above, etc.) fixed to properly return the
 referenced attributes also when the rule fails.

* New Design Rule macro :LOCAL-VALUE introduced.

 ;|| :LOCAL-VALUE ()
 ;|| PURPOSE:
 ;|| Provides access to the current local value of a component's
 ;|| attribute which is being (re)determined by its design rule.
 ;|| ARGUMENTS:
 ;|| NONE
 ;|| RETURNS:
 ;|| The current local value of a component's attribute which is being
 ;|| (re)determined.
 ;|| EXAMPLE:
 ;|| (:! process-plant nr-of-all-walls
 ;|| (format t "~&Current local value: ~A~%" (:local-value))
 ;|| (length (:? self all-walls)))
 ;||
 ;|| ==>
 ;||
 ;|| D++(13):
 ;|| ; --> Redetermining local value of PROCESS-PLANT's NR-OF-ALL-WALLS...
 ;|| Current local value: 4
 ;|| ; PROCESS-PLANT's NR-OF-ALL-WALLS: New value: 8; Old value: 4
 ;|| D++(14):
 ;||

* Design rule macro :LOCAL-ROTATION modified to accept
 ROTATIONS also as <a list of rotations> in addition to as
 <multiple individual rotations>. Thus, the following
 examples will now work.

 (:! transformer geo_rot ;;EXPRESSION (list of multiple rotations)
 (:local-rotation (:?1 wall) ((:x 45) (:z 45))))

 (:! transformer geo_rot ;;LOCAL BINDING (list of rotations)
 (let ((rot '((:y 45) (:z 30))))
 (:local-rotation (:?1 wall) rot)))

* A new optional argument MEMBER-DESCENDANTS-P added for design
 rule macros :N, :LAST, :ANY, and their derivatives like,
 :?1,...,?10 and :FIRST,...,:TENTH. The new argument, which
 defaults to T, determines whether to consider all instances
 that are descendants of the CLASS or just the direct
 instances of the CLASS while searching for the component.

 The default behavior of these macros, when the optional
 argument ASSEMBLY was given, was as if MEMBER-DESCENDANTS-P
 was set to T. If ASSEMBLY was not given, they behaved as if
 MEMBER-DESCENDANTS-P was set to NIL. Thus, the behavior of
 these macros remains the same when the optional argument
 ASSEMBLY is given. When the ASSEMBLY is not given, the
 behavior changes only in the rare case where a class and its
 subclass are both instantiated under the same assembly. For
 example,

 Library: PARTS--A--B
 Model:
 /--A.1
 /---A.2
 ASSEMBLY----A.3
 \---B.1
 \--B.2

* New Design Rule macro :CREATE introduced for making *substructure*
 and role attribute rules more readable. The :CREATE macro not only
 simplify the syntax for *substructure* and role attribute rules but
 allows partial instantiation of substructure descriptions by
 isolating any calculation errors or delays from the rest of the
 rule.

 ;|| :CREATE (class-or-role &optional (nr 1))
 ;|| TKa, 24-Apr-03
 ;|| PURPOSE:
 ;|| Simplifies the syntax for *substructure* and role attribute
 ;|| rules, and allows partial instantiation of substructure
 ;|| descriptions by isolating any calculation errors or delays from
 ;|| the rest of the rule.
 ;|| ARGUMENTS:
 ;|| class-or-role:
 ;|| A class of component or a role to be created (class or role
 ;|| name)
 ;|| nr (optional): Number of components to be created (non-negative
 ;|| integer, defaults to NIL). Note that if the argument nr is not
 ;|| provided, the attribute NR-<class name>, if it exists, is
 ;|| checked for the value. Otherwise user is prompted for the
 ;|| value.
 ;|| RETURNS:
 ;|| A substructure description.
 ;|| EXAMPLE1:
 ;|| :create macro simplifies the *substructure* rules, just compare
 ;|| these 2 rules producing the same substructure description.
 ;||
 ;|| (:! wall substructure (:! wall substructure
 ;|| (:create door 1) (list (list :N 1 'door)
 ;|| (:create window 1)) (list :N 1 'window)))
 ;||
 ;|| EXAMPLE2:
 ;|| Just like with other design rule macros class-or-role can be
 ;|| referenced by name, symbol, or expression.
 ;||
 ;|| (:! wall substructure
 ;|| (let ((nr 2)
 ;|| (window 'window))
 ;|| (:create window nr)))
 ;|| ==>
 ;|| ; --> Redetermining local value of WALL's SUBSTRUCTURE...
 ;|| ; WALL's SUBSTRUCTURE: New value: (:N 2 WINDOW);
 ;|| Old value: ((:N 1 DOOR)(:N 1 WINDOW))
 ;||
 ;|| EXAMPLE3:
 ;|| If the last expression in a rule is a :create expression (or the
 ;|| rule would return nil), then all :create expressions are

 ;|| combined to form the final substructure description. All other
 ;|| expression are ignored.
 ;||
 ;|| (:! wall substructure
 ;|| (:create door 1)
 ;|| '(:n 2 window) ;IGNORED
 ;|| (:create window 3))
 ;|| ==>
 ;|| ; --> Redetermining local value of WALL's SUBSTRUCTURE...
 ;|| ; WALL's SUBSTRUCTURE: New value: ((:N 1 DOOR) (:N 3 WINDOW));
 ;|| Old value: (:N 2 WINDOW)
 ;||
 ;|| EXAMPLE4:
 ;|| If the last expression in a rule is not a :create expression,
 ;|| then all :create expressions are ignored and the last expression,
 ;|| unless NIL, is used as the substructure description.
 ;||
 ;|| (:! wall substructure
 ;|| (:create door 3) ;IGNORED
 ;|| (:create window 3) ;IGNORED
 ;|| '(:n 2 window))
 ;|| ==>
 ;|| ; --> Redetermining local value of WALL's SUBSTRUCTURE...
 ;|| ; D's SUBSTRUCTURE: New value: (:N 2 WINDOW);
 ;|| Old value: ((:N 1 DOOR) (:N 3 WINDOW))
 ;||
 ;|| EXAMPLE5:
 ;|| Even if one or more :create expressions fail or is delayed, the
 ;|| rest of the rule will proceed allowing partial instantiation of
 ;|| the substructure.
 ;||
 ;|| (:! wall substructure
 ;|| (:create door 1)
 ;|| (:create window (/ 1 0)) ;Attempt to divide by zero
 ;|| (:create window 1))
 ;|| ==>
 ;|| ; --> Redetermining local value of WALL's SUBSTRUCTURE...
 ;|| ; WALL's SUBSTRUCTURE: Rule execution warning: Attempt to divide 1 by zero.
 ;|| ; WALL's SUBSTRUCTURE: New value: ((:N 1 DOOR) (:N 1 WINDOW));
 ;|| Old value: (:N 2 WINDOW)
 ;||
 ;|| EXAMPLE6:
 ;|| The use of :create macro is not tied to *substructure* rules
 ;|| only; it works equally well with any attributes, like role
 ;|| attributes.
 ;||
 ;|| (:! wall substructure
 ;|| (:create some-doors-and-windows))
 ;|| ==>
 ;|| ; --> Redetermining local value of WALL's SUBSTRUCTURE...
 ;|| ; WALL's SUBSTRUCTURE: New value: (:R SOME-DOORS-AND-WINDOWS);
 ;|| Old value: ((:N 1 DOOR) (:N 1 WINDOW))
 ;||
 ;|| (:! wall some-doors-and-windows
 ;|| (:create door 1)
 ;|| (:create window 2))
 ;|| ==>

 ;|| ; WALL's SOME-DOORS-AND-WINDOWS --> Using rule...
 ;|| ; WALL's SOME-DOORS-AND-WINDOWS: ((:N 1 DOOR) (:N 2 WINDOW))
 ;||
 ;|| EXAMPLE7:
 ;|| Even though :create macro is intended to be used in
 ;|| *substructure* or role attribute rules, it does return a proper
 ;|| substructure description even if called in other rules or
 ;|| evaluated as such.
 ;||
 ;|| D++(59): (:create door 2)
 ;|| (:N 2 DOOR)
 ;|| D++(60):
 ;||

* Design Rule relation access macros fixed to create proper
 dependencies even when the model does not contain any instances of
 the type specified by the access macro's optional CLASS argument.

 This fix affects all relation access macros, like :PARTS,
 :ALL-PARTS, :ASSEMBLY and their derivatives, but only when called
 with the optional CLASS argument and MEMBER-DESCENDANTS-P (defaults
 to T) set to NIL.

* New Design Rule macro :RELATE introduced for making *relations*
 attribute rules more readable. The :RELATE macro not only simplify
 the syntax for *relations* rules but allows partial implementation
 (relating) of relation descriptions by isolating any calculation
 errors or delays from the rest of the rule.

 ;|| :RELATE (relation from-components to-components)
 ;|| TKa, 02-Jun-03
 ;|| PURPOSE:
 ;|| Simplifies the syntax for *relations* attribute rules, and
 ;|| allows partial instantiation of relation descriptions by
 ;|| isolating any calculation errors or delays from the rest of the
 ;|| rule.
 ;|| [from-component] --[relation]--> [to-component]
 ;|| [to-component] --[inverse-relation]--> [from-component]
 ;|| ARGUMENTS:
 ;|| relation:
 ;|| Relation with which to relate the components (symbol)
 ;|| from-components:
 ;|| <component> | (<component>*) | (<component> <rel-init-data>) |
 ;|| ((<component> <rel-init-data>)*)
 ;|| to-components:
 ;|| <component> | (<component>*) | (<component> <rel-init-data>) |
 ;|| ((<component> <rel-init-data>)*)
 ;|| RETURNS:
 ;|| A relations description.
 ;|| EXAMPLE1:
 ;|| :relate macro simplifies the *relations* rules, just compare
 ;|| these 3 rules all producing the same substructure description.
 ;||
 ;|| (:! wall relations
 ;|| (:relate :mounted-on (list (:? door) (:? window)) self))
 ;||
 ;|| (:! wall relations

 ;|| (:relate :mounted-on (:? door) self)
 ;|| (:relate :mounted-on (:? window) self))
 ;||
 ;|| (:! wall relations
 ;|| (list (list :mounted-on (:? door) self)
 ;|| (list :mounted-on (:? window) self)))
 ;||
 ;|| EXAMPLE2:
 ;|| Relation initialization data can be associated with the
 ;|| components to be related. See GeometricModelingMadeEasy document
 ;|| for more information on using relation initialization data.
 ;||
 ;|| (:! wall relations
 ;|| ;;Mount window to the center of wall
 ;|| (:relate :mounted-on (:? window) self)
 ;|| ;;Align door's bottom face with wall's bottom face and
 ;|| ;;then rotate the door 180 degrees around X axis.
 ;|| (:relate :mounted-on
 ;|| (list (:? door) :face 'bottom)
 ;|| (list self :face 'bottom :X 180)))
 ;||
 ;|| EXAMPLE3:
 ;|| Just like with other design rule macros, relation,
 ;|| from-components, and to-components can be referenced by name,
 ;|| symbol, or expression.
 ;||
 ;|| (:! wall relations
 ;|| (let* ((door (:? door))
 ;|| (window (:? window))
 ;|| (door&window (list door window)))
 ;|| (:relate :mounted-on door&window self)))
 ;||
 ;|| EXAMPLE4:
 ;|| If the last expression in a rule is a :relate expression (or the
 ;|| rule would return nil), then all :relate expressions are
 ;|| combined to form the final relations description. All other
 ;|| expression are ignored.
 ;||
 ;|| (:! wall relations
 ;|| (:relate :mounted-on (:? door) self)
 ;|| (list :mounted-on (:? door) self) ;IGNORED
 ;|| (:relate :mounted-on (:? window) self))
 ;||
 ;|| EXAMPLE5:
 ;|| If the last expression in a rule is not a :relate expression,
 ;|| then all :relate expressions are ignored and the last
 ;|| expression, unless NIL, is used as the relations description.
 ;||
 ;|| (:! wall relations
 ;|| (:relate :mounted-on (:? door) self) ;IGNORED
 ;|| (:relate :mounted-on (:? window) self) ;IGNORED
 ;|| (list :mounted-on (:? door) self))
 ;||
 ;|| EXAMPLE6:
 ;|| Even if one or more :relate expressions fail or is delayed, the
 ;|| rest of the rule will proceed allowing partial instantiation of
 ;|| relation descriptions.

 ;||
 ;|| (:! wall relations
 ;|| (:relate :mounted-on (:? door) self)
 ;|| (:relate :mounted-on (:? window) ssselfff) ;An unknown component
 ;|| (:relate :mounted-on (:? window) self))
 ;||
 ;|| EXAMPLE7:
 ;|| Even though :relate macro is intended to be used in *relations*
 ;|| attribute rules, it does return a proper relations description
 ;|| even if called in other rules or evaluated as such.
 ;||
 ;|| D++(17): (:relate :mounted-on (:? door) (:?1 wall))
 ;|| (:MOUNTED-ON #<FRAME DOOR.S1652 TKA> #<FRAME WALL.S1496 TKA>)
 ;|| D++(18):
 ;||

* Parsing of design rule macros :create and :relate modified to allow
 them to be used in functions that are then called from design
 rules. For example, instead of

 (:! BUNCH-O-LINES SUBSTRUCTURE
 (:create line-test 3))

 you can now implement the same with the help of a function

 (defun bunch-o-lines-substructure ()
 (:create line-test 3))

 (:! BUNCH-O-LINES SUBSTRUCTURE
 (bunch-o-lines-substructure))

DESIGN++ FUNCTIONS (LISP/API)

* New plane related Design++ Functions introduced, namely
 DPP-PLANE-DISTANCE-TO-ORIGIN DPP-PLANE-NORMAL-VECTOR
 DPP-POINT-FROM-3-PLANES DPP-SAME-PLANES-P DPP-PARALLEL-PLANES-P
 DPP-PLANE-FROM-PLANE-AND-OFFSET

 ;|| DPP-PLANE-DISTANCE-TO-ORIGIN (plane)
 ;|| PURPOSE:
 ;|| Returns the distance to origin of a plane.
 ;|| ARGUMENTS:
 ;|| plane
 ;|| A plane (a list of x, y, z and distance to origin)
 ;|| RETURNS:
 ;|| The distance to origin of the plane.
 ;|| EXAMPLE:
 ;|| (dpp-plane-distance-to-origin '(-1 1 0 2.0))
 ;|| ==> 2.0
 ;||

 ;|| DPP-PLANE-NORMAL-VECTOR (plane)
 ;|| PURPOSE:

 ;|| Returns the normal vector of a plane.
 ;|| ARGUMENTS:
 ;|| plane
 ;|| A plane (a list of x, y, z and distance to origin)
 ;|| RETURNS:
 ;|| The normal vector (a list of x, y and z)
 ;|| EXAMPLE:
 ;|| (dpp-plane-normal-vector '(-1 1 0 2.0))
 ;|| ==> (-1 1 0)
 ;||

 ;|| DPP-POINT-FROM-3-PLANES (p1 p2 p3)
 ;|| PURPOSE:
 ;|| Returns a point at the intersection of the three planes.
 ;|| ARGUMENTS:
 ;|| p1, p2, p3:
 ;|| Planes (each a list of x, y, z and distance to origin)
 ;|| RETURNS:
 ;|| Point of intersection (list of x, y and z), or NIL if
 ;|| planes do not intersect at a point.
 ;|| EXAMPLE:
 ;|| (dpp-point-from-3-planes '(-1 1 0 2) '(1 1 0 2) '(0 0 1 4))
 ;|| ==> (0.0 2.0 4.0)
 ;||

 ;|| DPP-SAME-PLANES-P (p1 p2)
 ;|| PURPOSE:
 ;|| Verifies whether two planes are the same
 ;|| ARGUMENTS:
 ;|| p1, p2:
 ;|| Planes (Each a list of x, y, z components of the normal and distance to origin)
 ;|| RETURNS:
 ;|| T if planes coincide, otherwise NIL
 ;|| EXAMPLE:
 ;|| (dpp-same-planes-p '(1 1 1 0) '(1.0 1.0 1.0 0.0))
 ;|| ==> T
 ;||

 ;|| DPP-PARALLEL-PLANES-P (p1 p2)
 ;|| PURPOSE:
 ;|| Determines whether planes are parallel or not.
 ;|| ARGUMENTS:
 ;|| p1, p2:
 ;|| Planes (Each a list of x, y, z components of the normal and distance to origin)
 ;|| RETURNS:
 ;|| T (true) if parallel, otherwise NIL (false).
 ;|| EXAMPLE:
 ;|| (dpp-parallel-planes-p '(1 1 1 0) '(1.0 1.0 1.0 1.0))
 ;|| ==> T
 ;||

 ;|| DPP-PLANE-FROM-PLANE-AND-OFFSET (p1 offset)
 ;|| PURPOSE:
 ;|| Returns a plane that is an offset distance from a plane.
 ;|| ARGUMENTS:
 ;|| p:
 ;|| A planes (a list of x, y, z components of the normal and distance to origin)

 ;|| offset:
 ;|| Distance between the original plane and the next.
 ;|| RETURNS:
 ;|| Plane (a list of x, y, z components of the normal and distance to origin)
 ;|| , or NIL if p is NIL.
 ;|| EXAMPLE:
 ;|| (dpp-plane-from-plane-and-offset '(0 0 0 0.0) 1.0)
 ;|| ==> (0.0 0.0 0.0 1.0)
 ;||

* User function DPP-PROMPT-FOR-FILE superseded with DPP-SELECT-PATH,
 Which allows better control of the file or directory selection
 process

 ;|| DPP-SELECT-PATH (&key prompt title directory file-pattern
 ;|| file-pattern-prompt exists-p directory-p)
 ;|| PURPOSE:
 ;|| Prompts the user to select path
 ;|| ARGUMENTS:
 ;|| Key:
 ;|| prompt (string):
 ;|| A String to prompt user, defaults to "Choose a file"
 ;|| title (string):
 ;|| A dialog title, default is "Choose a file"
 ;|| exists-p (T/NIL)
 ;|| Select only existing file. With NIL, user can type the file name.
 ;|| Default is T.
 ;|| multiple-p (T/NIL)
 ;|| Select multiple files (not directories). The files are returned as list of strings.
 ;|| Default is NIL.
 ;|| directory-p (T/NIL):
 ;|| Select directory instead of a file. Default is NIL.
 ;|| initial-path (string):
 ;|| A directory from which to display files, defaults to project directory.
 ;|| initial-file (string):
 ;|| The default file to select.
 ;|| file-pattern (string):
 ;|| Wildcard expression describing wanted file. Default is "*.*"
 ;|| file-pattern-prompt (string):
 ;|| Defines the informative text which is associated to the the file-pattern.
 ;|| Default is "All Files".
 ;|| RETURNS:
 ;|| The full pathname string of the selected file or list of strings for multiple files.
 ;|| NOTE:
 ;|| The intended :native argument is disabled as in the native dialog in Galaxy 3.0
 ;|| cancel actions don't call the cancel hook and so UIS doesn't know if native
 ;|| dialog was canceled.
 ;|| EXAMPLE:
 ;|| (dpp-select-path :prompt "Specify a temporary file" :title "Select temporary file"
 ;|| :file-pattern "*.tmp" :file-pattern-prompt "Tmp File"
 ;|| :exists-p nil :initial-path "C:\\temp\\" :initial-file "temp.tmp")
 ;|| ==> "C:\\temp\\temporary.tmp"
 ;|| (dpp-select-path :multiple-p t)
 ;|| ==> ("D:\\d++60\\projects\\geo_test\\externals\\nr_1.lisp"
 ;|| "D:\\d++60\\projects\\geo_test\\externals\\nr_7.lisp")
 ;|| (dpp-select-path :directory-p t)
 ;|| ==> "D:\\d++60\\projects\\geo_test\\externals"

 ;||

* New user function DPP-PROJECTS-PATHNAME returns the current Design++
 projects directory path specified by DPPPROJECTS environment
 variable.

 ;|| DPP-PROJECTS-PATHNAME ()
 ;|| PURPOSE:
 ;|| To returns DPPPROJECTS pathname.
 ;|| RETURNS:
 ;|| Current DPPPROJECTS pathname as a string
 ;|| EXAMPLE:
 ;|| (dpp-projects-pathname)
 ;|| ==> "D:\\d++-projects\\"

* New user function DPP-SET-PROJECTS-PATHNAME changes the Design++
 projects directory path specified by DPPPROJECTS environment
 variable.

 ;|| DPP-SET-PROJECTS-PATHNAME (path)
 ;|| PURPOSE:
 ;|| To set DPPPROJECTS pathname.
 ;|| ARGUMENTS:
 ;|| path:
 ;|| New path for Design++ projects (string)
 ;|| RETURNS:
 ;|| New DPPPROJECTS pathname as a string
 ;|| EXAMPLE:
 ;|| (dpp-set-projects-pathname "D:\\d++-projects")
 ;|| ==> "D:\\d++-projects\\"

* Unambiguous component reference generation for Design++ Functions
 DPP-WRITE-EXTERNAL and DPP-WRITE-EXTERNAL-FOR-COMPONENTS fixed to
 handle correctly the case where a class and its subclass are both
 instantiated under the same assembly. For example,

 Library: PARTS--A--B
 Model:

 /--A.1
 /---A.2
 ASSEMBLY----A.3
 \---B.1
 \--B.2

 ;|| DPP-WRITE-EXTERNAL (&optional (model-name (dpp-get-current-model)) output-file)
 ;|| PURPOSE:
 ;|| Generates an external data file from the model MODEL-NAME. The
 ;|| model is traversed in depth-first order starting from ROOT. For
 ;|| each component the values of the attributes listed in
 ;|| external_attributes attribute (list of symbols) are written to
 ;|| OUTPUT-FILE.
 ;|| ARGUMENTS:
 ;|| model-name (optional):
 ;|| Model name, default = current model (symbol)
 ;|| output-file (optional):
 ;|| Output file name, default = nil (symbol or string)
 ;|| RETURNS:

 ;|| NIL
 ;|| EXAMPLE:
 ;|| (dpp-write-external)

 ;|| DPP-WRITE-EXTERNAL-FOR-COMPONENTS (component-list &optional output-file
 ;|| (model-name (dpp-get-current-model)))
 ;|| PURPOSE:
 ;|| Generates an external data file for the components in
 ;|| COMPONENT-LIST. For each component the values of the attributes
 ;|| listed in EXTERNAL_ATTRIBUTES (EXTERNAL-ATTRIBUTES and
 ;|| EXTERNAL.ATTRIBUTES are synonyms) attribute (list of symbols)
 ;|| are written to OUTPUT-FILE.
 ;|| ARGUMENTS:
 ;|| component-list (list of frames or component names):
 ;|| List of components for which the external data file is written
 ;|| for.
 ;|| output-file (optional):
 ;|| Output file name, default = prompt user (symbol or string)
 ;|| model-name (optional):
 ;|| Model name, default = current model (symbol)
 ;|| RETURNS:
 ;|| Filename if successful, otherwise NIL
 ;|| EXAMPLE:
 ;|| (dpp-write-external-for-components '(floor.s559 floor.s3133))
 ;|| ==> "/home/code/d++/projects/plant/externals/tka-new-ext.lisp"
 ;||

* Design Rule relation access macros fixed to create proper
 dependencies even when the model does not contain any instances of
 the type specified by the access macro's optional CLASS argument.

 This fix affects all relation access macros, like :PARTS,
 :ALL-PARTS, :ASSEMBLY and their derivatives, but only when called
 with the optional CLASS argument and MEMBER-DESCENDANTS-P (defaults
 to T) set to NIL.

* Default values for two keyword arguments for Design++ Function
 DPP-TRACE-RULES changed. Now, :WITH-VALUES defaults to T and
 :WITH-PRETTY-NAMES defaults to NIL. These are the preferred values
 for most Design++ users.

 ;|| DPP-TRACE-RULES (&key (with-values t)
 ;|| (with-pretty-names nil)
 ;|| (with-cycle-detection nil)
 ;|| (with-statistics nil)
 ;|| (components-of-class :all))
 ;|| PURPOSE:
 ;|| Enables Design Rule tracing with different trace options
 ;|| ARGUMENTS:
 ;|| with-pretty-names (keyword):
 ;|| Whether or not the rules are traced with components' pretty names or real
 ;|| names (T or NIL (default))
 ;|| with-values (keyword):
 ;|| Whether or not the trace should also contain attribute values
 ;|| (T (default) or NIL)
 ;|| with-cycle-detection (keyword):
 ;|| Whether or not to look for infinite cycles that cannot converge

 ;|| because of inconsistent design rules, typically an application
 ;|| error, (T or NIL (default))
 ;|| with-statistics (keyword):
 ;|| Whether or not to collect change propagation statistics (T or
 ;|| NIL (default))
 ;|| components-of-class (keyword):
 ;|| List of classes whose descendant components' rules are to be
 ;|| traced. Default value :all means that all rules of all instances
 ;|| are to be traced. (list of frame-or-ref or :all (default).
 ;|| RETURNS:
 ;|| NIL
 ;|| EXAMPLE:
 ;|| (dpp-trace-rules :with-values t :components-of-class '(pump steel))
 ;|| ==> T
 ;||

* A new keyword argument :EXIT-FN added to DEF-EXTERNAL-SERVER macro,
 which is used for defining a C/API client to be an external server
 for Design++.

 ;|| exit-fn (function, default: nil):
 ;|| A server-specific function to exit the actual server
 ;|| program. Exit-fn is called by kill-<server-name> without any
 ;|| arguments. The user-defined exit-fn is expected to exit the
 ;|| server gracefully.

* Index allocation and unique name generation optimized for component
 creation. These optimization becomes noticeable only when
 instantiating large number (>100x) of components of the same class
 under a single assembly.

 Also, Design++ function DPP-ADD-COMPONENT optimized
 significantly for creation on large number of components of
 the same class.
 ;|| DPP-ADD-COMPONENT (class-name assembly
 ;|| &optional (nr_comp 1) (model-name (dpp-get-current-model))
 ;|| (update-gui-p t))
 ;|| PURPOSE:
 ;|| Creates new components to an assembly in a model
 ;|| ARGUMENTS:
 ;|| class-name (symbol):
 ;|| Component's class name
 ;|| assembly:
 ;|| Assembly (parent) component in model (frame-or-ref)
 ;|| nr_comp (integer):
 ;|| Number of components to be created, default = 1
 ;|| model-name (symbol):
 ;|| Model of new component(s), default = current
 ;|| update-gui-p (T/NIL):
 ;|| T (default) if user interface is to be updated, otherwise NIL
 ;|| RETURNS:
 ;|| Created components (list of frames)
 ;|| EXAMPLE:
 ;|| (dpp-add-component 'floor 'parking_structure.s73)
 ;|| ==> (#<Frame: FLOOR.S82 EXAMPLE>)
 ;||
 ;|| (dpp-add-component 'floor 'parking_structure.s73 2)

 ;|| ==> (#<Frame: FLOOR.S83 EXAMPLE> #<Frame: FLOOR.S84 EXAMPLE>)
 ;||

* New Design++ Function DPP-SIMPLIFY-GEO-ROT introduced.

 ;|| DPP-SIMPLIFY-GEO-ROT (geo-rot)
 ;|| PURPOSE:
 ;|| Simplifies a list of rotations given in 'geo-rot' format.
 ;|| ARGUMENTS:
 ;|| A list of rotations around major coordinate axes in 'geo-rot'
 ;|| format.
 ;|| RETURNS:
 ;|| A simplified list of rotations around major coordinate axes in
 ;|| 'geo-rot' format.
 ;|| EXAMPLE:
 ;|| (dpp-simplify-geo-rot
 ;|| `((:Z -90.0) (:X 90.0) (:Y 90) (:Z 180.0) (:X 90)))
 ;|| ==> ((:X 0.0))
 ;||

DESIGN++ CORE

* Reading in external data source files fixed to maintain the order of
 component-attribute-value triplets with indirect component
 referencing. This optimizes the value retrieval for components with
 many siblings all with a separate component-attribute-value triplet
 (indirect component referencing) in the data source.

 Value retrieval further optimized by categorizing
 component-attribute-value triplets with indirect component
 referencing also by the triplets' assemblies.

* Parsing of substructure descriptions of form (:N NIL <component>
 <substructure>*) fixed to consider NIL as <number> and treat it as
 if it were 0.

* Validity checking of substructure descriptions of form (:N NIL
 <component> <substructure>*) modified to consider NIL as
 <number>. Thus, descriptions of this form are now considered valid.

* A number of elusive and unreproducible garbage-collector bugs
 fixed. Some of the bugs were related to various combinations of
 sys:resize-areas usage and/or the open-old-area-fence
 gsgc-parameter.

* A workaround provided for a Windows bug where, under rare
 circumstances, a socket duplication system call can fail to return a
 valid socket handle. This problem occurs primarily on Windows XP
 Home.

* Pretty name generation fixed to handle properly ambiguous frames,
 that is, multiple frames (in different KBs) with the same name.

* Error in displaying Design++ splash screen during system startup
 fixed. This was a very rare and hard to reproduce problem which

 seemed to occur only on Windows XP.

* Online documentation access for Lisp functions fixed to point to the
 new Common Lisp HyperSpec web site at
 http://www.lispworks.com/reference/HyperSpec/index.html

 Online documentation (PDF) for all Design++ and Lisp functions and
 design rule macros is directly accessible from Command Interpreter
 (Emacs shortcut <ctrl>-c <ctrl>-f) and from Design Rule Editor.

* Evaluating a design rule definition in the Command Interpreter (or
 otherwise) modified NOT to convert the rule string to a lowercase
 string when storing the rule to a component's attribute. This is to
 assure that the cases of potential strings within the rule itself
 are retained.

* Design++ Console window's buffer size modified to be
 user-settable. The buffer size can be set with a new Design++
 command line argument +<number>, where <number> is base 10 and must
 be >= 1,000. The buffer's default maximum size is increased from
 25,000 bytes to 100,000 bytes.

 The new command line argument +<number> will set the maximum size of
 the Console window's buffer to <number> bytes, with the "shrinkage
 factor" set to 15% of <number>. The shrinkage factor is the amount
 that the buffer will shrink by when the maximum size is reached.

 To customize the Console window's buffer size you need to edit your
 Design++ startup batch file <d++>\d++.bat. Look for the following
 lines towards the end of the file.

 :WITHOUT-EMACS
 rem No icon on tray, close Console after exiting, new title, show splash for 3 sec
 "%DPPBIN%/bg" \"%DPPBIN%/%DPPIMAGENAME%.exe\" +R +M +t \"Design++ Console\" +Bt -I
\"%DPPIMAGEPATH%\"

 For example, to increase the buffer size to 1 MB you would
 have to edit the above line as follows.

 :WITHOUT-EMACS
 rem No icon on tray, close Console after exiting, new title, show splash for 3 sec
 rem Set the console window's buffer size to 1,000,000 bytes
 "%DPPBIN%/bg" \"%DPPBIN%/%DPPIMAGENAME%.exe\" +R +M +1000000 +t \"Design++ Console\" +Bt -I
\"%DPPIMAGEPATH%\"

* Parsing of Design Rules fixed to handle correctly Lisp special form
 environments within rules.

* Design Rule parsing modified to treat a bound symbol as a variable
 even if the symbol is not formally declared as a special
 variable. This modification allows variables to be introduced (for
 rule macros) by simply setting a value for a symbol. This is
 identical to how symbols are treated in Design++ 5.x and earlier
 versions. For example,

 D++(19): (:? floor)

 #<FRAME FLOOR.S1485 TKA>
 D++(20): (setf my-floor *)
 #<FRAME FLOOR.S1485 TKA>
 ;;Following works as the bound symbol is treated as a variable
 D++(21): (:assembly my-floor)
 #<FRAME BUILDING.S1478 TKA>
 D++(22):

* Socket interface fixed to handle the case where a socket server is
 exited explicitly before the client has had a change to
 unregister. The problem could result in error, for example, if the
 client failed to handle the exit message correctly.

 Fixed also the case where the client is exited explicitly after it
 has already unregistered.

* Internal object data structure transformation threshold optimized
 for new ACL compiler settings.

* Franz ACL 7.0 :STREAMA module added. You can verify that the module
 :STREAMA is properly loaded by evaluating (require :streama) which
 should return NIL if the module is loaded.

* Creating a single component fixed to make sure that each of the
 inherited attributes with dependencies are properly inherited.

DYNAMIC CONFIGURATION ENHANCEMENTS

* Redetermination optimized to delay the redetermination of attributes
 of those components whose assemblies are marked for dynamic
 instantiation. This reduces unnecessary redeterminations within the
 components that will be deleted along with their assemblies by the
 dynamic instantiation.

* Cycle detection during redetermination modified not to report cycles
 if the dynamic instantiation is expected to change the model
 structure. Since the cycle could be a result of the model not being
 in a consistent state, the attribute's determination is delayed
 until after the next dynamic instantiation.

* Internal data structure for redetermination optimized.

* Change management and dynamic instantiation for the :removal
 strategy fixed to create and maintain a model fully expanded.

* Attribute determination cycles during redetermination and dynamic
 instantiation revisited. As the cycle is likely transitional
 resulting from the model not being in a consistent state, the user
 is not consulted but the attribute is marked for a later
 redetermination.

* Design rule macros :PARTS and :ALL-PARTS (and their derivatives)
 optimized to delay *parts* referring rules if the assembly is
 scheduled for instantiation. This prevents unnecessary rule

 (re)determinations based on invalid *parts*.

* Handling of transitional design rule errors during change
 propagation modified to exit all the rules in the call stack and
 delay the (re)determination of the initiating rule. This improves
 the error handling as the NIL returned by the failing rule is no
 longer propagated up the call stack.

* Handling of transitional errors caused by re-referencing an
 attribute that is already marked for later (re)determination
 fixed. Also, design rule failure reporting enhanced to identify the
 actual erred rule (component & attribute), which caused the failure.

* Handling of transitional errors caused by reference cycles
 fixed. Also, design rule failure reporting enhanced to print out the
 reference cycle, which caused the failure.

* Several sequence functions reimplemented to be more tolerant of
 improper arguments. This will improve the overall fault tolerance
 against transitional errors during change propagation when the model
 is in an inconsistent state. Functions affected are elt, length,
 make-list, map1, butlast, nbutlast, and nth. Note that there will be
 a minor performance penalty for the added argument checking.

* Change management for the predefined MOUNTED-ON relation fixed and
 optimized. The MOUNTED-ON relation automates the details of
 inter-component positioning and orientation.

* Retrieving external data source values explicitly within a design
 rule, e.g. by calling DPP-FROM-EXTERNAL, fixed to allow the calling
 rule stack to be delayed if a data source entry refers to the
 parts of an assembly which is scheduled for instantiation.

* Reporting real attribute redetermination failures fixed to report
 each failed attribute only once.

* Design Rule macro :RULECALL fixed to allow the calling rule to be
 delayed if the rule it calls errs or is delayed.

* Dependency creation optimized to collect referenced attributes only
 if a design rule macro is called from within a rule.

* Delaying of a *parts*-referring design rule fixed to delay the
 calculation only if the assembly exists. This prevents the rule
 calculation from being delayed unnecessarily in case the (virtual)
 assembly is never created.

* Printing of the removal propagation warning about a depending
 component, which is not in the current model, modified not to print
 the warning if the missing component has already been deleted.

* The removal of *relations* attribute's value fixed to properly
 disconnect existing relations.

* Dynamic instantiation fixed to handle the case where the local value
 of an assembly's *substructure* attribute (determined by a rule) is
 identical with its inherited value.

* Attribute value removal fixed to delay change propagation until the
 value is properly removed. This is especially important for handling
 properly the case where the removed local value is identical with
 the inherited value.

* Dynamic instantiation fixed to avoid instantiating a *relations*
 spec more than once. In certain situations the relations were
 instantiated multiple times resulting in duplicate relations.

* Dynamic instantiation fixed to avoid processing instantiation
 requests more than once.

* Change propagation modified to mark all new depending attributes for
 redetermination before actually processing any of them. Knowing all
 the pending redeterminations in advance allows them to be processed
 in an order that reduces unnecessary redeterminations.

* Redetermination failure reporting modified NOT to report a
 redetermination that was simply delayed until the components it
 refers to were created.

* Handling of transitional design rule errors during change
 propagation modified NOT to delay the (re)determination of the
 special *component-init* and *substructure-init* rules OR any other
 rules triggered by their determination. These are initialization
 rules that by definition should complete immediately after a
 component is created or a substructure is expanded. This is
 especially important as these rules are mostly used for side effects
 and not so much for their actual value.

* :create and :relate design rule macros fixed to correctly delay an
 attribute's redetermination when the macros refer to parts that have
 not yet been instantiated.

INSTALLATION

* JAVA is now an installation component including JRE, JAVA/API and
 RelationBrowser and it is not installed in compact setup. If Java is
 not installed, then when needed Design++ tries to use Java from
 Windows registry or from PATH.

* English is the only supported language option. Support for Finnish
 has been removed.

* Internal pathname representation has been switched to proper Windows
 pathnames. That is, backslashes "\", not forward slashes "/" are used
 to separate components in pathnames. Still, any legal combination of
 the two slashes should work.

* d++.bat file environment variables modified.

 DPPLICENSETYPE
 Entry 'fixed' renamed to 'standalone', which is also used by
 'Standalone Server' option.

 DPPWITHEMACS
 Was previously DPPNOEMACS. If its value equals 'yes' or not
 defined (default), then Design++ is started with Emacs. If it
 equals 'no', then Design++ is started without Emacs.

 DPPEMACSWINMODE
 Previously if it was defined, then Design++ Emacs Windows mode
 (winmode) was used. Now winmode is used if its value value equals
 'yes'.

 DPPWITHDEVGUI
 Was previously DPPNOGUI. If it equals 'yes' or not defined
 (default), then Design++ development GUI programs (UIP & DRE) are
 started at Design++ startup. If it equals 'no', then development
 GUIs are not started.

 DPPREMOTECLIENTSOK
 If its value equals 'yes', then Design++ accepts connections from
 remote CAPI clients, like pre 6.0. If not defined (default) or
 equals 'no', then only local CAPI client connections are accepted.

 DPPNOCAD
 Not used anymore, instead use DPPCAD=disabled

LICENSE MANAGER

* Floating license performance on Windows XP, NT, and 2000 networks
 improved by using an asynchronous notification mechanism.

* Design++ license manager revisited:

 1. Installation of license service drivers streamlined for Design++
 License manager update utility. For example, the separate DOS
 window prompting whether or not the user wants to proceed is
 eliminated.

 2. License manager dialog enhanced to show also the current license
 manager version.

 3. Parsing of start times for currently active network licenses in
 the license manager dialog fixed to take into account daylight
 saving time.

* Design++ licensing mechanism revisited:

 1. The handling of losing a license unexpectedly, e.g. due to a
 network connection problem, modified to provide a 5-minute grace
 period during which the user can save any unsaved work. The grace
 period starts only after the user has acknowledged a dialog
 informing about the lost license. Design++ exits after the grace
 period unless the license is restored.

 2. License Manager dialog's 'Status' button renamed to 'Refresh'.

 3. New License Usage Monitoring capability introduced.

 License usage monitoring capability allows organizations to keep
 better track of the use of their floating, networked Design++
 licenses. For example, the license usage log can be used to
 analyze the peek usage during a certain time period, or the
 number of Design++ access denials due to lack of licenses.

 License usage monitoring complements the dynamic license usage
 utility, which shows the current status of active users at any
 given time. Even though the license usage monitoring is most
 beneficial for network license server administrators, the license
 usage log is collected also for standalone licenses.

 All usage information is collected to a usage log file on the
 license server; one line for every session on every client
 workstation. For network licensing, the usage log is collected to
 file %DPPLICENSEPATH%\DP-license-usage-log\DP-license-usage.log

 For a workstation with a standalone license, the usage log is
 collected to file
 %DPP%\misc\crpk\DP-license-usage-log\DP-license-usage.log

 The DP-license-usage-log subdirectory can also contain several
 temporary session-specific log files. To assure uninterrupted
 usage monitoring, it's very important not to delete or edit any
 of these files.

 For viewing the license usage log there is a new a 'Design++
 License Usage Log' dialog which can be accessed from the
 'Design++ License Manager' dialog. The usage log dialog has basic
 selection and sorting capabilities.

 For each Design++ session the following information is stored to
 the license usage log file. All items are written on a single
 line and are separated by the "|" character. The usage log is in
 text format.

 <Workstation Name> as string
 <Worksation IP Address> in dotted decimal format
 <User Name> as string
 <Product Name> as string
 <Local Time Zone> as integer
 <Session Start Time (GMT)> as string
 <Session Start Time (GMT)> as integer
 <Session License Status> one of
 OK - License requested successfully
 OK_AfterWait - All licenses in use; waited until one became
 available
 NotAvailable - All licenses in use; exited before one
 became available
 NotAuthorized - Design++ not authorized to run on this
 workstation/server
 <Session End Time (GMT)> as string
 <Session End Time (GMT)> as integer

 Time zone is represented as a number of hours offset from

 Greenwich Mean Time (GMT). Time zone values increase with motion
 to the west and decrease to the east. For example, Pacific
 Standard Time (PST) is 8 and Central European Time (CET) is -1.

 The session start and end times are recorded in GMT, also known
 as Universal Time (UTC). Times are recorded both in a human
 readable format and also as an absolute time represented by a
 single, non-negative integer (the number of seconds since
 midnight, January 1, 1900 GMT). The absolute time format is more
 convenient for any utilities displaying and analyzing the usage
 information.

* New Windows Server 2003 compatible license manager released. There
 is one drawback; the Design++ 5.0 and 6.0 license managers are not
 compatible. That is, once you have upgraded to Design++ 6.0,
 existing Design++ 5.0 installations will not start without
 reauthorization and vice versa.

 To allow existing 5.0 installation to share licenses with 6.0, a
 intermediate Design++ version 5.2 was released. 5.2 images were
 built off the same source code as 5.0 images except for the changes
 required by the new license manager. Upgrading to the new license
 manager by upgrading to 5.2 should be a smooth process as there are
 no other major changes in the Design++ itself.

 If you are interested in the new license manager for your existing
 Design++ 5.0 installation, please contact your Design Power
 representative for the Design++ 5.2 upgrade ZIP file. The
 installation is easy; simply extract all the files from the
 Design++52Upgrade.ZIP file starting from your top-level <d++50>
 directory.

* License usage monitoring revisited:

 1. Updating session and master usage log files modified to detect
 and warn if the user does not have proper write access to the
 usage log directory.

 2. Categorizing of the different files (master log, session log,
 others) in the usage log directory improved.

 3. Parsing usage log entries made more robust.

 4. Checking for orphaned session usage logs modified to be performed
 only when the user explicitly requests to see the 'Usage Log'
 from the 'License Manager' dialog.

 5. For network-licensed clients, the updating of session usage log
 optimized to write the file first on the local hard drive and
 then copy it to the license server in a non-blocking background
 process.

 6. For network-licensed clients, the updating of master usage log
 optimized to update the master log from the local session log so
 that there is no need to copy the local log file to the license
 server first.

* New Design++ Function DPP-LICENSE-CHECK-ORPHANED-SESSION-LOGS
 introduced.

 ;|| DPP-LICENSE-CHECK-ORPHANED-SESSION-LOGS ()
 ;|| PURPOSE:
 ;|| Checks for orphaned session usage logs, i.e., usage logs of
 ;|| sessions that have exited abnormally. If found, the master usage
 ;|| log is updated with the usage information from the orphaned
 ;|| session log and the orphaned session log is deleted.
 ;|| ARGUMENTS:
 ;|| RETURNS:
 ;|| NIL
 ;|| EXAMPLE:
 ;|| (dpp-license-check-orphaned-session-logs)
 ;|| ==> NIL
 ;||

* New command line arguments introduced for Design++ license manager
 update utility, <d++>\misc\crpk\dppUpdateLicensemanager.exe. This
 update utility can be used to update or reinstall the license
 manager. It will update or install all the required license manager
 files.

 The new command line arguments for dppUpdateLicensemanager are:
 -Path <dpplicensepath>
 Specifies the location for the Design++ network license
 directory. Defaults to <d++>\misc\crpk\
 -Uninstall
 Uninstalls the Design++ license manager, but does not remove any
 local licenses.
 -Silent
 Runs the update utility without displaying any dialogs.

* License Manager revisited:

 1. Network license performance over a slow network connection
 improved by running license authorization in a separate,
 non-blocking process.

 2. Network license performance further improved by copying the usage
 information updates to the license server in a separate,
 non-blocking process.

 3. The handling of DPPLICENSEPATH enhanced to accept more variety in
 the path setting. For example, assuming that

 - License path on server BASEBALL is c:\dpp_license
 - Partition L: is mapped to \\baseball\c
 - Partition N: is mapped to \\baseball\c\dpp_license

 then all of the following DPPLICENSEPATH settings now work OK.

 DPPLICENSEPATH=\\baseball\c\dpp_license (UNC, no mapping required)
 DPPLICENSEPATH=L:\dpp_license
 DPPLICENSEPATH=N:\
 DPPLICENSEPATH=N:/
 DPPLICENSEPATH=N:

 4. Initial authorization modified to make sure that the license
 service, either standalone or on the license server, is up and
 running.

 5. A license manager hang-up problem caused by starting external
 Design++ processes, like GUI and CAD, while a license manager
 call was in progress is now fixed.

 6. New Design++ Function DPP-LICENSE-DEF-AUTHORIZATION-AFTER-METHOD
 introduced.

 ;|| DPP-LICENSE-DEF-AUTHORIZATION-AFTER-METHOD (method)
 ;|| PURPOSE:
 ;|| Defines an after method to be called after the initial Design++
 ;|| license authorization has been verified. This is to allow
 ;|| applications to complete licensing related initializations. Note
 ;|| that the method needs to be defined in the application image. It
 ;|| is too late to define it as part of the application's startup.
 ;|| ARGUMENTS:
 ;|| method:
 ;|| A function or a symbol with function binding to be called AFTER
 ;|| the initial license authorization has been verified. Method is
 ;|| called with no arguments.
 ;|| RETURNS:
 ;|| Method function
 ;|| EXAMPLE:
 ;|| (dpp-license-def-authorization-after-method
 ;|| #'(lambda ()
 ;|| (format t "~&This is the license authorization after method.~%")
 ;|| (format t "~&License related application initializations would come next.~%")))
 ;|| ==>
 ;|| ; Starting Design++...
 ;|| ; Requesting a license...
 ;|| This is the license authorization after method.
 ;|| License related application initializations would come next.
 ;|| OK
 ;|| ; Registering UI Server

* Optimized network licensing modified to start the initial
 authorization early enough so that the license information is
 available by the time an application is loaded in
 <d++>\misc\d++-startup.lisp.

* Network licensing fixed to handle correctly those external clients
 that registered while the initial authorization was still in
 progress.

* Checking for the license server status modified to take into account
 that the user may not have proper access rights to perform the
 check. This is especially true if the license server runs on Windows
 Server 2003, which, since SP1, has significantly restricted access
 rights for remote users.

* Problem in copying the session (local) usage log file to the master
 license usage directory on the network license server fixed.

* Updating an existing session (local) usage log file fixed to be more
 tolerant against potential file IO errors.

* Thanks to a new Franz ACL 7.0 patch, launching external programs
 modified not to share any open file handles with the launched
 program unless explicitly required. This should fix the problem of
 license manager calls sometimes not returning causing the license
 manager to hang.

C/API

* Compiled with VC 6.0sp6, VC 7.0, VC 7.1, and VC 8.0

* Return value formatting fixed for CAPI function
 dppAttributeDetermineValue

* New user function dppProjectGetProjectsPath returns the current
 Design++ projects directory path specified by DPPPROJECTSPATH.

* New stringArray functions dppStringArrayCopy and dppStringArraySort

* Uses 'localhost' as default hostname instead of the IP number, so
 that, for example, if network connection to DNS server is lost, CAPI
 clients don't exit.

* The problem that prevented C side from detecting that Design++ (Lisp
 side) had exited is now fixed. Because of the problem CAPI clients
 were sometimes left running even after Design++ (Lisp side) had
 exited.

* With dppCommFatalErrorProc, a callback function can now be
 registered to handle fatal errors. Default is to call system exit()
 function.

* Fixed dppComponentGetAssembly, dppComponentGetAssemblyAndPartList
 and dppComponentGetInfo to work with components without a parent,
 i.e., with model root components.

COMAPI

* New examples, see:
 <d++>\comapi\MFC_Client MFC client example
 <d++>\comapi\simpleVBclient Simple VB client
 <d++>\comapi\Excel Excel VBA example

* Fixed to allocate message strings dynamically for messages sent from
 Design++ and, thus, removing an artificial upper bound for message
 length.

* The new C/API callback fatalErrorProcHandler routed as a quit
 message.

* Asynchronous Design++ to COM/API message size limit increased

 significantly. Previously messages over 500 KB could cause
 dppCOMserver to crash with a stack overflow.

* Obsolete asynchronous event handler dppAsyncNotify removed, use
 dppEventProc instead. To make the transition easier, dppAsyncNotify
 is temporarily available in a separate COM/API server version. To
 install this alternative version, just execute file
 <d++>/comapi/dppCOMserver2.exe

* Added an alias dppCommShutdownClient for old dppEndCOM function.
 This function name is same as what C/API is using.

* When call to a COM client fails, the dppCOMserver now closes the
 Design++ communication link and exists more gracefully.

JAVA/API

* Delivered and compiled with JAVA 1.5

* JAVA/API uses system properties DPPPORTNUMBER and DPPSERVERNAME if
 defined. This means that there can be multiple concurrent Design++
 sessions with an active JAVA/API link. When doing
 custom load of dpp.jar, start java like:

 java -DDPPPORTNUMBER=7422 -DDPPSERVERNAME=kanishka -jar dpp.jar

* Created a simple example, which is used in documentation. See
 <d++>\java-api\com\dp\Example\

GEOMETRY

* Added vertex and edge calculations for primitives SYMBOL and
 SYMBOL_WITH_ATTRIBUTES to facilitate :mounted-on relations. Numbered
 vertices are sequentially defined at GEO_LOC and along each
 coordinate axis at GEO_X_SCALE, GEO_Y_SCALE and
 GEO_Z_SCALE. Finally, the center is located at the center of a box
 formed by the numbered vertices. See the updated documentation for
 more details.

CAD INTEGRATION MANAGER (CIM)

* Setting DPPNOCAD=t is replace with setting DPPCAD=disabled.

* CAD link initialization for Design++ restart modified to reset
 project-specific CAD settings, like menu specifications, only if the
 CAD link type (AutoCAD vs. Visio) is different from what it was when
 the image was saved.

* Design++ function DPP-CAD-SELECT-SYSTEM renamed to
 DPP-CAD-SET-CAD-SYSTEM.

* Introduced a new function dppCadStringTo3DPoint, which is not using
 strtok and so can be used to parse point value while parsing the
 main string with strtok. It also handles Lisp floating point print
 formats.

* A new callback dppCadSetFatalErrorProc introduced to handle fatal
 C/API errors.

* dpp-cad-send-user-message fixed to return T or NIL.

* New Design++ functions introduced to handle autocalc settings
 DPP-CAD-SET-AUTOCALC
 DPP-CAD-GET-AUTOCALC

* New Design++ function DPP-CAD-GET-CAD-NAME introduced to query the
 name of the CAD system currently in use.

* The problem in removing the value of the GEO_TYPE attribute
 fixed. This problem occurred only if the CAD Integration Manager
 (CIM) (or a related CAD interface: AutoCAD or Visio) was loaded.

MICROSTATION LINK

* Supports MicroStation V8 2004 Edition and V8 XM Edition.

* AutoDrafter is included in the main link.

* AutoDrafter's 'Create View' operation modified to return also the
 extent location in addition to the actual x and y extents.

* dppextap.ml is used instead of dppextap.mo to link the external
 application.

* All mdl user functions have been renamed to start with dppExtap.

* The way free and user functions are specified has changed. Still,
 the the old code is supported for now. For example, previous
 specification, like

 DPP_FREE_FUNC ext_freeFuncs[] = {
 extapCreate_cellWithAttributes, // index = 0, D++ example free
 };

 is now specified as

 static freeProcFunc_t free_func_table[] = {
 {"example_Symbol", extapCreate_cellWithAttributes},
 };

 Now, on Lisp side, instead of using function's index integer to
 specify the function, the name string is used.

* New user functions
 Public void dppExtapPaletteOpen(boolean openPalett);
 Public void dppExtapMenuOpen (boolean menuOpen);

 Public void dppExtapUnitSet(int unittype);
 Public int dppExtapUnitGet(void);
 Public void dppExtapStringToPoint(Dpoint3d *pt, char *str);

* In mdl/include/dppcomm.h, dppmessageP exported so that the common
 GEO_ data is visible to dppextap. Also, the component name has been
 added into this structure.

* Error handling and error messages are improved.

* Filenames are now always converted to use backslahes "\" as pathname
 separators instead of forward slashes "/".

* At the startup, the MS console window has been modified to show
 information about the different versions being used. The default
 dppextap code puts up a warning dialog if the msdpp version is
 different from that of dppextap. It is assumed that if the main or
 the min version numbers are different, then there might be
 compatibility problems. This is not the case with sub and patch
 numbers. The default dppextap also makes sure that the MS version
 that it was compiled with matches the MS version that it's being
 used with.

* MS Link has now some tracing functionality, which can be enabled
 by calling Design++ function DPP-CAD-SET-TRACING.

* Following levels are used with with AutoDrafter:
 "ADDimension" "ADText" "ADCenterline" "ADNote" "ADSymbol"

* With V8, MDL stringLinkage is used instead of the Application
 Element to mark Design++ components so that the Design++ component
 name can be seen in standard MS element information dialog box.

* The boolean type in extap functions has been replaced with BoolInt.

AUTOCAD/ARX LINK

* Supports AutoCAD versions 2004, 2005, and 2006

* AutoCAD version 2007 is NOT supported and does not work.

* New interface functions introduced:
 dppDllImport const char *dppExtapGetCadInterfacePath(void);
 dppDllImport const char *dppExtapGetDppProjectsPath(void);
 dppDllImport const char *dppExtapGetProjectCadPath(void);
 dppDllImport const char *dppExtapGetProjectPath(void);
 dppDllImport const char *dppExtapGetDppPath(void);

* The default Design++ AutoCAD menu handling modified as follows. If
 the default menu (dpp-menu.* file) is requested but not found, then
 a sub menu (dpp-sub-menu.* file), if found, is installed to the
 AutoCAD menu bar just before the 'Help' menu entry.

* The menu file is now loaded before ant AutoLisp code. This allows
 users to modify AutoCAD menu in startup.lsp file.

* Fixed the coordinate entry for dpp-move command.

* Fixed some synchronization problem for opening, deleting and
 reverting models.

* AutoDrafter is included in the base product and is always loaded.

* Filename handling now supports UNC pathnames.

VISIO LINK

* New utility functions introduced:

 DPP-VISIO-GET-LAST-ERROR-MESSAGE ()
 Returns the last Visio link's error message shown in a dialog box.
 Example:
 (dpp-visio-get-last-error-message) ->
 "Failed to find model's 'v7' document
 Failed to find model's 'v7' page '<NULL>'
 Failed to create geometry for polyline 'POLYLINE.S252'
 "

 DPP-VISIO-GET-SETTINGS ()
 Returns certain Visio link and Visio settings.
 Example:
 (dpp-visio-get-settings) ->
 ((:tracing nil) ;See dpp-visio-set-tracing
 (:traceFile nil) ;See dpp-visio-set-tracing
 (:showErrorDbox t) ;Show dppVisio error dialog boxes
 ;;Following settings are Visio Application properties.
 ;;See Visio help for more details.

;;Application properties are returned here because
 ;;otherwise they could not be queried at all as the
 ;;function used for setting them, dpp-visio-executeline,
 ;;cannot be used for querying the property values.
 (:showChanges t) ;See dpp-visio-show-changes
 (:TraceFlags 0) ;
 (:UndoEnabled t) ;Whether or not Visio maintains undo information.
)

 DPP-VISIO-SET-SETTINGS (key-val-list)
 Sets Visio link settings.
 Example:
 (dpp-visio-set-settings
 '((:showChanges NIL)
 (:tracing T)
 (:traceFile "D:/temp/xx.log")
 (:showErrorDbox NIL))

 DPP-VISIO-SET-TRACIG (&optional (status T) (file NIL))
 Toggles Visio link tracing on or off. If the status is T and a
 file name is given, then the trace is also saved into the
 specified file. If the program <d++>\bin\win32-i86\TraceWin.exe is
 running, it gets the trace messages, otherwise the trace is

 printed to the console window by dppvisio.vls. Note that when
 tracing is on, command 'Show Settings' scans drawing and prints
 component mappings into the trace.

 DPP-VISIO-VERSION ()
 Returns current Visio version information by querying the Windows
 registry.
 Example:
 Visio 5 -> "5.0b"
 Visio 2000 -> "6.0"
 Visio 2000 SR1 -> "6.0 SR1" or "6.1"
 Visio 2002 -> "10.0"
 Visio 2003 -> "11.0"

 DPP-VISIO-CLOSE-STENCILS ()
 Closes all stencil windows for current model document
 window. Returns T if the operation succeeded or NIL if there were
 errors.

 DPP-VISIO-CLEAN-DOCUMENT-STENCIL (&optional (all-p nil))
 Removes masters from document stencil. Returns T if the operation
 succeeded or NIL if there were errors. Note that by default (all-p
 set to NIL) only unused masters are removed. Trying to remove
 masters that are in use can cause Visio 2000 SR1 to crash.

 DPP-VISIO-CHECKSYMBOL (symbolName)
 Checks if the specified symbol exists in document master or in
 stencil.
 Example:
 (dpp-visio-checkSymbol "Horizontal") -> T
 (dpp-visio-checkSymbol "Basic Shapes;Double flexi-arrow") -> T

 DPP-CAD-USING-VISIO-P (&optional cad-system)
 Predicate for checking if the current CAD system in use is Visio.
 Example:
 (dpp-cad-using-visio-P) -> T

* Design++ function DPP-VISIO-CLEAN-DOCUMENT-STENCIL has been
 optimized.

* Error dialogs modified to show Visio error messages, when available,
 instead of the error codes.

* An optional argument all-p, defaults to nil, is added to Design++
 function DPP-VISIO-CLEAN-DOCUMENT-STENCIL. This prevents the problem
 where deleting the masters that are in use in the current document
 sometimes causes Visio 2000 SR1 to crash. Now, by default, only
 unused masters are removed.

* When Visio link tracing is on, command 'Show Settings' scans drawing
 and prints component mappings into the trace.

* New free primitive BoxWithFill introduced. The new primitive has an
 optional fill-specification argument (string) for specifying values
 to shape's 'Fill Format' section. Cell values are:

 FillPattern - int

 FillForegnd - string/int
 FillBkgnd - string/int

 Fill specifications are passed in as GEO_ARGUMENTS value, like
 "2 Red Cyan"

* Symbol scaling modified to do the scaling only if scale != 1.0

USER INTERFACE SERVER (UIS)

* New 'License Usage Log' subdialog introduced for the 'License
 Manager' dialog.

* The maximum dialog sizes are now limited to the size of the current
 display.

DESIGN RULE EDITOR (DRE)

* Design Rule Editor (DRE) integrated more closely with the rest of
 the Developer's Interface (UIP):
 - DRE now opens automatically in the vicinity of the location from
 where the edit request was issued, e.g., Component Editor or
 Magnifier.
 - Selecting Component Editor's 'Design Rule' pane opens DRE
 automatically assuming DRE is the default rule editing
 tool. Otherwise, rule file is opened in Emacs. Thus, a rule can no
 longer be edited inside the 'Design Rule' pane.
 - To speed up the opening of DRE, it is started automatically
 whenever UIP is started.
 - DRE's 'Context Sensitive Menu' dialog is integrated with the main
 DRE window.
 - Selecting DRE's 'X' (close) button minimizes DRE into the taskbar
 instead of exiting the program.

* The binding of <return> key modified to be <linefeed>+<tab>.

* Design rule compilation modified to show compilation warning and
 error messages also in a dialog in addition to printing them to the
 Command Interpreter. Requiring user acknowledgment assures that
 compilation messages don't go unnoticed.

 Note that the compilation messages are shown in a dialog only when
 the compilation is initiated from the Design Rule Editor (DRE) or
 some other Design++ client/server. If a rule is compiled in Emacs or
 Command Interpreter, then the messages are only printed to the
 Command Interpreter as before.

* The placing of subdialogs fixed to place the dialogs over the parent
 dialog.

* Removed some obsolete reports from 'Rule Check' result dialog.

* DRE title bar now shows 'Design Rule for Attribute <name> in Class

 <name>'

* Design++ icon is now shown for DRE when using ALT-TAB instead of the
 generic Windows icon.

* The 'Help' menu now opens the DRE section in the Design++ User's
 Manual.

* The size of the rule window has been adjusted to about 72
 characters.

EMACS INTERFACE

* The Emacs version that Design++ is delivered with is GNU Emacs 21.4.

* fi:common-lisp-host is now set to "localhost" instead of (system-name)
 (setq fi:common-lisp-host "localhost")
 as this prevents Design++ from exiting if DNS is used and the network
 connection is lost.

* Autosaving is now enabled by default. To disable it, simply
 uncomment the following line in <d++>\misc\dpp.el
 ;;(setq auto-save-default nil)

* When compiling a design rule or a function, the compilation results
 are shown in the console buffer (Design++ Command Interpreter). If
 the buffer is not visible, a new Emacs window is opened for it. The
 default size for the new console window has been reduced to 5
 lines. It used to be half of the current window.

* Setting DPPEMACSWINMODE=yes causes Emacs to be started in Design++
 Emacs Windows mode (winmode).

USER INTERFACE PROGRAM (UIP)

* New Querytool dialog introduced for searching information from
 libraries and models.

* New menus added for AutoDrafter and ReportWriter

* The main dialog has a new special icon for AutoDrafter's drawing
 library.

* Design Rule Editor (DRE) is now opened when clicking a component
 editor's 'Design Rule' pane.

* Design Rule Editor (DRE) is now always opened to the current
 cursor position. The position is no longer fixed.

* Component/classname symbols in frame facet value "#<FRAME x.s123 v>"
 fields are now highlighted. Double-clicking the highlighted symbol
 opens up a component editor for that component or class.

* After selecting an attribute, the copy command (Ctrl-C) copies
 the attribute name into Windows clipboard.

* In Magnifier, the copy command (Ctrl-C) copies the selected items
 into Windows clipboard.

* 'Mark for Copying' shortcut changed from Crtl-M to Ctrl-C.

* 'Copy Marked' shortcut changed from Shift-Insert to Ctrl-V.

* New 'Properties' dialog introduced for projects, libraries, models,
 components, and classes.

* New 'Design++ Settings' dialog introduced for viewing current
 internal settings.

* 'Available Projects' dialog has a new 'Browse...' option which
 allows projects to be loaded from any directory, not just from the
 projects directory.

* 'Window>More Windows...' dialog has new 'Close', 'Minimize', and
 'Activate' buttons. The 'Close' button now closes the selected
 dialog and not the 'More Windows...' dialog itself, which can be
 closed with the X box.

* Many of the dialogs and dialog items have a 'Help' command or menu,
 which now opens either the help for the selected item or the 'Start
 Here' document in Acrobat.

DATABASE LINK

* RDB (ODBC) link optimized significantly for retrieving large amount
 of data with a single query. The larger the amount retrieved, the
 bigger the improvement.

* Retrieving 50 KB and larger amounts of data fixed to properly return
 all of the data and not to cut off anything.

* Design++ function DPP-RDB-SQL function fixed not to filter out #\;
 (semicolon) and #\return (return) characters from its sql-clause
 argument. As a result, SQL clauses like
 (dpp-rdb-sql "insert into test_table values('1;2')" :std)
 are now passed through as such.

* Both ODBC link and the classic RDB (ORACLE) link are built in. To
 switch between the two links, use Design++ function
 DPP-RDB-LINK-TYPE. For example, executing
 (dpp-rdb-link-type :oracle)
 resets the current database link and switches to RDB (ORACLE) link.

* Support for national character sets improved for ODBC link.

* Usernames and passwords are now handled as strings instead of
 symbols. Still, Design++ functions accept symbols. For example, the
 following username/password combinations are equivalent

 :std 'passwd
 "STD" "PASSWD"

RELATION BROWSER

* The browser dialog modified to look more like the other UIP grapher
 dialogs.

* Modified to use Java's WindowsClassicLookAndFeel instead of
 WindowsLookAndFeel so that with Windows XP themes, the button
 background colors work as intended.

MISC

* dppdiag shows following new information with -sys option
 - pending reboot?
 - crypkey service status
 - used inside of a virtual machine?
 - admin privileges?

* dppdiag new argument -log to enables logging into
 %TEMP%\\dppdiag-'pid'.log

=====

